You need to memorize this : Law of Cosines

For any $\triangle A B C$,

$a^{2}=b^{2}+c^{2}-2 b c \cos A$
$b^{2}=a^{2}+c^{2}-2 a c \cos B$
$c^{2}=a^{2}+b^{2}-2 a b \cos C$

A Proof of Law of Cosines
http://www.themathpage.com/aTrig/law-of-cosines.htm\#proof

Law of Cosines Examples

1. Given $\triangle A B C ; a=17, b=19, \angle C=31^{\circ}$. B

Find c to the nearest tenth.
$\begin{aligned} c^{2} & =a^{2}+b^{2}-2 a b \cos C \\ c^{2} & =\sqrt{17^{2}+19^{2}-2(17)(19) \cos 31^{\circ}} \\ c & =\sqrt{96.26992375} . \\ c & \approx 9.8 u\end{aligned}$

2. Given $\triangle A B C ; a=90, b=67, c=36$. B

Find $\angle A$ to the nearest minute.

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& \frac{a^{2}-b^{2}-c^{2}}{-2 b c}=\frac{-2 b c \cos A}{-2 b c} \\
& \cos A=\frac{a^{2}-b^{2}-c^{2}}{-2 b c} \\
& \cos A=\frac{\left(90^{2}-67^{2}-36^{2}\right)}{(-2(67)(36))} \\
& \cos A=-.4798922056 \\
& A=\cos ^{-1}(-.4798922056) \\
& A=11841
\end{aligned}
$$

3. Solve $\triangle D F G$. Given $\angle G=81^{\circ} ; d=4.7 ; f=5.1$.

$$
\begin{aligned}
& \sqrt[g^{2}]{2}=\sqrt{(4.7)^{2}+(5.1)^{2}-2(4.7)(5.1) \cos 81^{\circ}} 6.4=g \\
& \frac{g \approx 6.4 u}{\left.\frac{n o w \text { use law of sines }}{\sin 81^{\circ}}\right)=\frac{\sin x}{4.7}} \\
& \frac{6.4 \sin x}{6.4}=\frac{(4.7) \sin 81^{\circ}}{6.4} \\
& x=\sin ^{-1}\left(\frac{4.7 \sin 81^{\circ}}{6}\right) \\
& x=46^{\circ} 30^{\circ} \\
& \angle 0=46^{\circ} 30^{\circ} \\
& F=180^{\circ}-81^{\circ}-46^{\circ} 30^{\prime} \\
& \angle F=52^{\circ} 30^{\circ}
\end{aligned}
$$

